

Fiche méthode 5

Conversions au lycée (1/2)

2^{nde}

Objectif : savoir convertir une donnée ... sans se tromper

La méthode de conversion présentée ci-dessous est celle qui permet de résoudre tous les problèmes liés aux conversions.

Les préfixes et les puissances de 10 associées :

SOUSMULTIPLES ET MULTIPLES												
nano n	micro μ	milli m	centi c	déci d	unité	déca da	hecto h	kilo k		méga M		giga G
10-9	10-6	10-3	10 ⁻²	10 ⁻¹	100=1	10^{1}	10 ²	10 ³		106		109

Exemples à connaitre par cœur :

1 nanomètre =
$$1 \times nm = 1 \times 10^{-9} m$$

1 micromètre = $1 \times \mu m = 1 \times 10^{-6} m$

Les conversions de volume à connaitre par cœur :

La méthode de conversion à connaître pour poursuivre des études scientifiques

Le principe est simple : il suffit de remplacer l'unité de départ par son équivalence dans l'unité souhaité ! Ce qui suppose de connaître par cœur les deux encadrés ci-dessus.

Exemples de conversions faciles :

Exprimer 63 μ m en m : 63 \times μ m = 63 \times 10⁻⁶ m

Exprimer 15 Gm en m : $15 \times Gm = 15 \times 10^9 \text{ m}$

Certaines conversions demandent des calculs supplémentaires ...

Conversions au lycée (2/2)

Exprimer 0,000271 m en µm:

Pour appliquer la méthode proposée ci-dessus, il faut pouvoir exprimé 1 m en µm. Mais le tableau de conversion donnée sur la page précédente ne donne pas directement la conversion de 1 m exprimé en µm!

Pour cela il est nécessaire de faire les petits calculs suivants :

```
1 \mum = 1 × 10<sup>-6</sup> m

1 \mum × 10<sup>6</sup> = 1 × 10<sup>-6</sup> m × 10<sup>6</sup>

1 × 10<sup>6</sup> \mum = 1 × 10<sup>6</sup> × 10<sup>-6</sup> m

1 × 10<sup>6</sup> \mum = 1 × 10<sup>6-6</sup> m = 1 × 10<sup>0</sup> m = 1 m
```

On a donc : $1 \text{ m} = 10^6 \text{ } \mu\text{m}$

On applique ensuite la méthode de conversion :

$$0,000271 \times 1 \text{ m} = 0,000271 \times 10^6 \text{ } \mu\text{m}$$

= 271 \text{ } \text{ \text{m}}

Quand l'unité de la mesure est le produit de plusieurs unités, les conversions deviennent plus complexes.

Voici 3 exemples d'unités résultant d'un produit :

cm² = cm × cm
km / h =
$$\frac{\text{km}}{\text{h}} = \frac{\text{km}}{1} \times \frac{1}{\text{h}}$$

m / s² = $\frac{\text{m}}{\text{c}^2} = \frac{\text{m}}{1} \times \frac{1}{\text{c}^2}$

Dans ces cas-là, il faut faire apparaitre le produit des unités pour convertir chacune d'entre elles une par une. Voici quelques exemples :

Exprimer 370 cm³ en m³ :
$$370 \text{ cm}^3 = 370 \times \text{cm} \times \text{cm} \times \text{cm}$$

= $370 \times 0.01 \text{ m} \times 0.01 \text{ m} \times 0.01 \text{ m}$
= $370 \times 10^{-2} \text{ m} \times 10^{-2} \text{ m} \times 10^{-2} \text{ m}$
= $370 \times 10^{-2} \times 10^{-2} \times 10^{-2} \times \text{m} \times \text{m} \times \text{m}$
= $370 \times 10^{-6} \times \text{m}^3$

Exprimer 90 km / h en m / s :

$$90 \ km/h = 90 \times \frac{km}{h} = 90 \times \frac{10^3 m}{60 \times 60 \ s} = 90 \times \frac{1000 \ m}{3600 \ s} = 90 \times \frac{1000}{3600} \times \frac{m}{s}$$
$$= \frac{90}{1} \times \frac{1,000}{3,600} \times \frac{m}{s} = \frac{90}{3.6} \times \frac{m}{s} = 25 \times \frac{m}{s} = 25 \ m/s$$