

Chapitre 3

Cours 7: tracé du vecteur vitesse (1 / 2)

2nde

<u>Objectif</u>: Représenter des vecteurs vitesse

Activité 1 : de l'utilité d'une échelle des vitesses

L'échelle des vitesses permet de déterminer la longueur du vecteur vitesse sur votre feuille.

Par exemple:

Vous devez dessiner un vecteur vitesse dont la valeur est 75 m / s.

L'échelle des vitesses est la suivante : 1 cm pour 10 m / s

Il s'agit d'une situation de proportionnalité donc vous pouvez faire un tableau de proportionnalité :

Longueur du vecteur sur le document	Valeur du vecteur vitesse
1 cm	10 m/s
L	75 m / s

$$\frac{1cm}{L} = \frac{10 \text{ m/s}}{75\text{m/s}} \quad \text{donc} \quad \frac{1cm}{L} = \frac{10}{75}$$

donc
$$1cm \times 75 = L \times 10$$

donc
$$L = \frac{75 \times 1cm}{10} = 7,5 \ cm$$

Le vecteur aura donc sur votre feuille une longueur de 7,5 cm.

Question 1:

Vous disposez d'une très grande feuille pour tracer vos vecteurs vitesse. Vous décidez donc de changer d'échelle des vitesses. Vous choisissez la nouvelle échelle suivante : 1 cm pour 5 m / s.

La valeur de votre vecteur vitesse est toujours de 75 m/s.

En appliquant la méthode décrite ci-dessus, calculer la longueur L_{nouvelle} de ce vecteur vitesse avec la nouvelle échelle des vitesses.

Activité 2 : étude d'une capture d'écran du notebook sur les vecteurs vitesses

La durée qui sépare deux positions successives du ballon est T = 200 ms = 0,200 s.

Echelle des vitesses : 1cm représente 2 m / s .

Chapitre 3

Cours 7: tracé du vecteur vitesse (2 / 2)

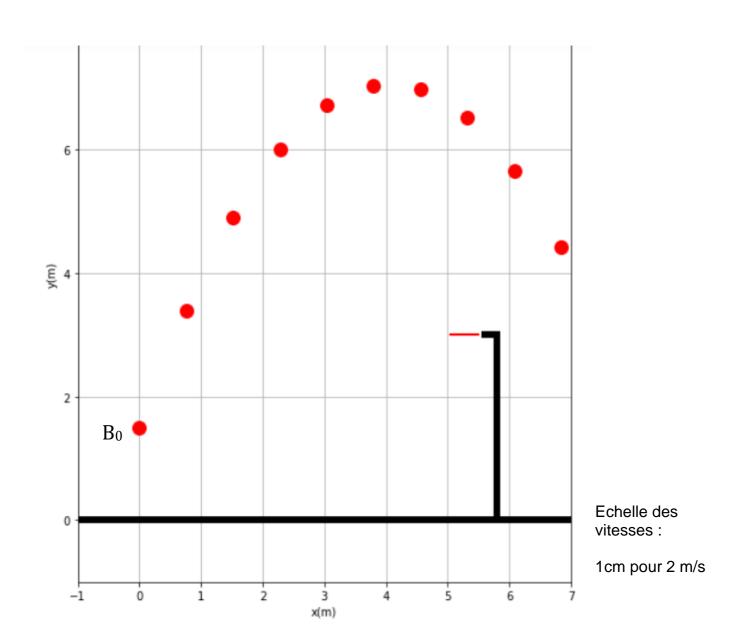
2^{nde}

Question 2:

Positionnez les points B_0 , B_1 , B_2 , B_3 , ... correspondant au centre du ballon aux instants t_0 , t_1 , t_2 , t_3 , ...

Question 3:

On donne les valeurs des vecteurs vitesses à différentes dates :


A la date t₁, la valeur v₁ du vecteur vitesse est égale à m / s.

A la date t_3 , la valeur v_3 du vecteur vitesse est égale à m / s.

A la date t_5 , la valeur v_5 du vecteur vitesse est égale à m / s.

A la date t₇, la valeur v₇ du vecteur vitesse est égale à m / s.

Tracer les 4 vecteurs vitesse correspondant sur la figure ci-dessous.

